Для осуществления моделирования необходимо создать шумовую выборку, плотность распределения вероятности которой подчинялась бы выражению (1). В качестве константы в выражении (1) выступает величина , полученная путем использования свойства плотности распределения:
. (75)
В итоге окончательное выражение для плотности распределения помехи примет вид:
,
[1; 4]. (76)
Исходя из полученного выражения, получается интегральная функция распределения величины x:
, (77)
где - неполная гамма-функция.
Далее, исходя из свойства о том, что если случайную величину , распределенную равномерно на интервале (0, 1), подвергнуть преобразованию по закону
, то восстанавливается реализация случайной величины, распределенной по закону (77) с плотностью распределения
. Именно таким образом моделируется шумовая выборка для различных значений параметра α.
Следует заметить, что дисперсия указанной помехи равна . Для того, чтоб сравнивать эффективность работы алгоритмов при воздействии различных помех, эти помехи должны иметь одинаковые дисперсии. Поэтому случайную величину необходимо умножать на коэффициент, равный
. Данная нормировка позволяет получить дисперсию:
. (78)
Самое читаемое:
Исследования свойств гексагональных кодирующих коллиматоров для однофотонной эмиссионной томографии
Цель
работы: Численно исследовать аппаратные функции кодирующих коллиматоров,
построенных на базе псевдослучайных последовательностей, расширенных
псевдослучайных последовательностей, троичных последовательностей, расширенных
троичных последовательностей. Оптимизировать скорость расчета аппаратных
функций гексагональных кодирующих ...