Проведем сравнительный анализ режимов самовозбуждения, используя при этом различные характеристики автогенератора.
Мягкий режим
Если рабочая точка находится на участке характеристики iK(uБЭ) с наибольшей крутизной, то режим самовозбуждения называется мягким.
Проследим за изменениями амплитуды тока первой гармоники в зависимости от величины коэффициента обратной связи КОС. Изменение КОС приводит к изменению угла наклона a прямой обратной связи (рис.3.1)
а) б)
Рис. 3.1 Мягкий режим самовозбуждения
При КОС = КОС1 состояние покоя устойчиво и генератор не возбуждается, амплитуда колебаний равна нулю (рис. 3.1 б). Величина КОС = КОС2 = ККР является граничной (критической) между устойчивостью и неустойчивостью состояния покоя. При КОС = КОС3 > ККР состояние покоя неустойчиво, генератор возбудится, и величина Im1 установится соответствующей точке А. При увеличении КОС величина первой гармоники выходного тока будет плавно расти и при КОС = КОС4 установится в точке Б. При уменьшении КОС амплитуда колебаний будет уменьшаться по той же кривой и колебания сорвутся при коэффициенте обратной связи:
КОС = КОС2 < ККР.
В качестве выводов можно отметить следующие особенности мягкого режима самовозбуждения:
для возбуждения не требуется большой величины коэффициента обратной связи КОС;
возбуждение и срыв колебаний происходят при одном и том же значении коэффициента обратной связи ККР;
возможна плавная регулировка амплитуды стационарных колебаний путем изменения величины коэффициента обратной связи КОС;
как недостаток следует отметить большое значение постоянной составляющей коллекторного тока, что приводит к малому значению КПД.
.1.2 Жесткий режим
Если рабочая точка находится на участке характеристики iK = f (uБЭ) с малой крутизной S < SMAX, то режим самовозбуждения называется жестким.
Проведем анализ режима по колебательной характеристике автогенератора Im1 = f (UmБЭ) и характеристике Im1 = f (КОС), представленных на рис. 3.2 а) и б) соответственно.
а) б)
Рис. 3.2 Жесткий режим самовозбуждения
Анализируя точки пересечения прямых обратной связи с колебательной характеристикой, приходим к выводу, что возбуждение автогенератора произойдет, когда коэффициент обратной связи превысит величину КОС3 = КОСКР. Дальнейшее увеличение КОС приводит к небольшому увеличению амплитуды первой гармоники выходного (коллекторного) тока Im1 по пути В-Г-Д. Уменьшение КОС до КОС1 не приводит к срыву колебаний, так как точки В и Б устойчивы, а точка А устойчива справа. Колебания срываются в точке А, т. е. при КОС < КОС1, так как точка А неустойчива слева.
Таким образом, можно отметить следующие особенности работы генератора при жестком режиме самовозбуждения:
для самовозбуждения требуется большая величина коэффициента обратной связи КОС;
возбуждение и срыв колебаний происходят ступенчато при разных значениях коэффициента обратной связи КОС;
амплитуда стационарных колебаний в больших пределах изменяться не может;
постоянная составляющая коллекторного тока меньше, чем в мягком режиме, следовательно, значительно выше КПД.
Сравнивая положительные и отрицательные стороны рассмотренных режимов самовозбуждения, приходим к общему выводу: надежное самовозбуждение генератора обеспечивает мягкий режим, а экономичную работу, высокий КПД и более стабильную амплитуду колебаний - жесткий режим.
Стремление объединить эти преимущества привело к идее использования автоматического смещения, когда генератор возбуждается при мягком режиме самовозбуждения, а его работа происходит в жестком режиме. Сущность автоматического смещения рассмотрена ниже.
Самое читаемое:
Анализ и синтез систем автоматического регулирования
Цель настоящей работы - выбор и обоснование типов регуляторов
положения, скорости и тока, а также расчет параметров настройки этих
регуляторов. Для синтеза автоматической системы будем использовать метод
поконтурной оптимизации с использованием методов модального и симметричного
оптимума.
При функциональном проектировании автомат ...