Импульсы напряжения пилообразной формы могут быть как положительной, так и отрицательной полярности. На рисунке 1 показана реальная форма пилообразного импульса положительной полярности.
Рис.1 Форма пилообразного импульса положительной полярности
Важнейшим параметрами пилообразных импульсов являются: длительность прямого (рабочего) хода tпр, длительность обратного хода tобр, период повторения Т, амплитуда импульса Um. Поскольку строго линейный закон изменения напряжения U (t) получить невозможно, степень отклонения этого напряжения от линейного закона характеризует закон нелинейности:
ε= (1)
Где |u` (t) |t=0 и | u` (t) | t=tпр - соответственно скорость изменения напряжения в начале и в конце рабочего хода. В ждущем режиме имеется еще длительность паузы tп, в течение которой u (t) =const.
В практических схемах генераторов пилообразного напряжения tпр находятся в пределах от десятых долей микросекунды до десятков секунд, tобр - от 1 до 20% от tпр, Um - от единиц до тысяч вольт. Значение ε так же зависти от назначения схемы и допускается (например, в осциллографии) до 10%.
Параметром, характеризующим схему генератора импульсов, является коэффициент использования напряжения источника питания E, под которым понимают отношение:
ξ=Um/E. (2)
Простейший принцип получения пилообразного напряжения основан на процессе заряда или разряда конденсатора C через резистор R (рис.1, б). Если ключ S разомкнут, то конденсатор заряжается от источника постоянного напряжения E. При этом напряжение на конденсаторе Uc (выходе схемы), стремясь к асимптотическому уровню E (см. рис.1, а), изменяется по экспоненциальному закону:
Uc=E (1-e - t/RC) (3)
Замыкание ключа S приводит к быстрому разряду конденсатора. Скорость разряда конденсатора зависит от сопротивления ключа в замкнутом состоянии. Затем процесс повторяется. Прямой ход пилообразного напряжения в этой схеме формируется при разомкнутом ключе, а обратный при - замкнутом. Таким образом, для реализации этого принципа генератор должен содержать зарядное или разрядное устройство, интегрирующий конденсатор или ключ.
Взяв производные duc/dt выражения (3) при t = 0 и t = tпр и подставив их в формулу (1), для коэффициента нелинейности получаем:
ε = 1-e - tпр/RC (4)
Так как при t = tпр, uc = Um, то, согласно равенству (3),
Um = E (1-e - tпр/RC),
или, с учетом выражения (2):
ε=Um/E=ξ (5)
Следовательно, высокую степень линейности пилообразного напряжения (малое ε) можно получить при условии E >>Um. Это приводит к плохому использованию напряжения источника питания.
Например, при Um = 10В и ε=1% E = 1000В.
Известно, что напряжение на конденсаторе Uc связано с протекающим через него током ic соотношением:
Uc=1/c.
Если ic = I = const, то uc = It/C = kt изменяется во времени по линейному закону. Следовательно, для получения пилообразных напряжений, изменяющихся с отклонениями от линейного закона, которые во много раз меньше, чем аналогичные отклонения в схеме (рис.1, б), необходимо, чтобы зарядный ток конденсатора был постоянен. Для этих целей применяют токостабилизирующие элементы (ТСЭ), ток которых не зависит от приложенного напряжения. Схема получения пилообразного напряжения с зарядным ТСЭ показана на рис.1. в.
Реально не существует элементов или двухполюсников, которые обеспечивали бы идеальную зависимость uc=kt. Однако, если использовать в качестве ТСЭ коллекторно-эмиттерную цепь транзистора, коллекторный ток которого на рабочем участке характеристики почти не зависит от коллекторного напряжения, то напряжение на конденсаторе с определенной степенью приближения можно считать линейно изменяющимся.
Самое читаемое:
Исследование электромагнитной обстановки в помещении при воздействии сверхкоротких электромагнитных импульсов на электронные средства
Задача борьбы с электромагнитными воздействиями возникла почти
одновременно с электроникой, но в то время самостоятельного значения не имела и
особых трудностей для своего решения не представляла. Трудности появились с
увеличением количества технических средств, в частности электронных средств
(ЭС), усложнением и ...