Одним из основных узлов всех приборов, построенных по предлагаемому методу, является измерительный фазовый мост (ИФМ), который в значительной мере и определяет его рабочий диапазон частот, динамический диапазон амплитуд, пределы и погрешности определения комплексных коэффициентов передачи испытуемых смесителей.
В этой связи необходимо проанализировать возможности ИФМ, особенно применительно к измерению сдвигов фаз смесителей.
Для измерения действительного сдвига фаз, вносимого испытуемым смесителем во входной сигнал при его гетеродинном преобразовании в сигнал промежуточной частоты необходим второй опорный (эталонный) смеситель.
Эти два смесителя подвергаются двум видам испытаний, при одном определяется разность, а при другом - сумма сдвигов фаз, вносимых смесителями в сигнал промежуточной частоты (ПЧ) в процессе гетеродинного преобразования частоты.
После этого может быть вычислен действительный сдвиг фаз любого из смесителей.
Если вычислить ФЧХ опорного смесителя, он может в дальнейшем использоваться для измерения действительного сдвига фаз любого испытуемого устройства, содержащего преобразователь частоты.
При этом необходимо, чтобы рабочий режим опорного смесителя не менялся по сравнению с тем, для которого была вычислена его ФЧХ, особенно уровень мощности сигнала гетеродина.
В случае реализации структурных схем включения испытуемого и опорного смесителей, приведенных на рисунке 7 для определения разности и суммы их сдвигов фаз уровень сигнала на входе испытуемого смесителя меняется на величину коэффициента передачи опорного смесителя. Коэффициент передачи испытуемого смесителя может быть больше и меньше единицы.
Для диодного смесителя он меньше, а для транзисторного больше единицы.
Кроме того, испытуемое СВЧ-устройство, содержащее преобразователь частоты - смеситель, может содержать ряд других узлов: фильтры, аттенюаторы, УПЧ и т.д. и выполняться, как уже отмечалось ранее, в виде неразъемного модуля.
В любом случае это приводит к изменению рабочего режима испытуемого и опорного смесителей.
С целью снижения или полного исключения этого изменения в ИФМ необходимо включить последовательно соединенные аттенюатор и усилитель. Такие узлы должны компенсировать изменение уровня мощности сигнала при переходе от одной схемы соединения ИФМ к другой.
Для выявления особенностей построения ИФМ при измерениях суммы и разности сдвигов фаз смесителей на рисунках 8, 9 и 10 приведены структурные схемы ИФМ в этих режимах.
Анализ этих схем позволяет наглядно выявить перечень узлов, которые необходимо включать в ИФМ в режимах измерения суммы и разности фаз.
сдвиг фаз в полосовом фильтре;
сдвиг фаз в аттенюаторе;
сдвиг фаз в усилителе;
сдвиг фаз в испытуемом смесителе;
сдвиг фаз в опорном смесителе;
сдвиг фаз в смесителе ПЧ измерительного канала;
сдвиг фаз в смесителе ПЧ опорного канала.
Рисунок 8 - Структурная схема включения смесителей для измерения разности фаз
Потери преобразования серийно выпускаемых смесителей не превышают 10 дБ, поэтому коэффициент усиления усилителя не может быть меньше этой величины. В случае испытания смесителя с коэффициентом передачи больше единицы для сохранения уровней сигналов неизменными на его входах и входе опорного смесителя требуется применение аттенюатора. Однако в этом случае, как видно из структурных схем, приведенных на рисунках 9 и 10, существенно меняется рабочий режим самого опорного смесителя. Поэтому представляется более целесообразным применение в качестве опорного именно диодного смесителя, имеющего коэффициент передачи меньше единицы. При соединении смесителей в ИФМ для измерения разности сдвигов фаз уровень сигнала на входе усилителя увеличивается, что приводит к изменению уровня сигнала на входе испытуемого смесителя, для компенсации которого последовательно с усилителем и надо включить аттенюатор.
Самое читаемое:
Конструкторско-технологическое проектирование печатной платы
печатная плата
Проектирование печатных плат (ПП) представляет трудоемкий, но очень
важный процесс. Для того, чтобы обеспечить функционирование электронной
аппаратуры (ЭА) необходимы не только схемотехнические решения, функциональная
точность, надежность, но и учет влияния внешней среды, конструктивных,
эксплуатационных требований, пр ...