В качестве прибора по учету тепловой энергии выбираем ультразвуковой двухпоточный теплосчетчик СТУ-1с регистрацией давления на горизонтальном участке тепловой сети после выходных задвижек №3 и №4.
Рисунок 7. Ультрозвуковой двухпоточный теплосчетчик СТУ-1
Состав теплосчетчика:
· Электронный вычислитель
· 4 пьезоэлектрических датчика, устанавливаемые попарно на падающем и обратном трубопроводах
· Комплект термометров платиновых разностных КТПТР-01
· Термометр сопротивления, устанавливаемый на трубопроводе холодной воды
· 3 датчика давления, устанавливаемые попарно на падающем и обратном трубопроводах
Теплосчетчик обеспечивает преобразование, вычисление, индикацию и регистрацию количества тепловой энергии, расхода, массового расхода, объема, массы, температуры и давления теплоносителя по падающему и обратному трубопроводам.
Теплосчетчик обеспечивает архивацию среднедвухминутных, среднечасовых, среднесуточных и итоговых значений параметров теплоносителя, архивацию нештатных ситуаций, времени корректной и некорректной наработки теплосчетчика.
Диапазоны измерения объемного расхода в падающем и обратном трубопроводах:
максимальный расход-4800 м3 /ч
переходный расход -96 м3 /ч
минимальный расход-32 м3 /ч
Диапазон температур измеряемой среды 1…150ºС
Диапазон разности температур 5…145 ºС
Допустимое рабочее давление 1,6 МПа
Вычислитель работоспособен:
при температуре окружающей среды от+5 до 50 ºС
при влажности окружающей среды не более 93%при температуре не более +35 ºС
Преобразователь расхода работоспособен
при температуре измеряемой среды от 1 до 150 ºС
при температуре окружающей среды от -40 до 60 ºС
при влажности окружающей среды не более 93%при температуре не более +35 ºС
Питание теплосчетчика осуществляется от сети напряжением 220В, частотой 50 Гц.
В теплосчетчике используется метод прямого измерения времени распространения каждого ультрозвукового импульса от одного пьезоэлектрического преобразователя к другому.
Схема устройства пьезоэлектрического датчика давления.
Рисунок 8: p - измеряемое давление; 1 - пьезопластины; 2 - гайка из диэлектрика; 3 - электрический вывод; 4 - корпус (служащий вторым выводом); 5 - изолятор; 6 - металлический электрод.
Пьезоэлектрический датчик, измерительный преобразователь механического усилия в электрический сигнал; его действие основано на использовании пьезоэлектрического эффекта.
Конструкция пьезометрического датчика давления показана на рисунке 7. Под действием измеряемого давления на внешней и внутренней сторонах пары пластин пьезоэлектрика возникают электрические заряды, причём суммарная эдс (между выводом и корпусом) изменяется пропорционально давлению. Эти датчики целесообразно применять при измерении быстроменяющегося давления; если давление меняется медленно, то возрастает погрешность преобразования из-за «стекания» электрического заряда с пластин на корпус. Включением дополнительного конденсатора параллельно пьезометрического датчика можно уменьшить погрешность измерения, однако при этом уменьшается напряжение на выводах датчика.
Основные достоинства пьезометрического датчика - их высокие динамические характеристики и способность воспринимать колебания давления с частотой от десятков Гц до десятков МГц.
Самое читаемое:
Исследования свойств гексагональных кодирующих коллиматоров для однофотонной эмиссионной томографии
Цель
работы: Численно исследовать аппаратные функции кодирующих коллиматоров,
построенных на базе псевдослучайных последовательностей, расширенных
псевдослучайных последовательностей, троичных последовательностей, расширенных
троичных последовательностей. Оптимизировать скорость расчета аппаратных
функций гексагональных кодирующих ...